•研究论文•

大气条件下 O3 与乙炔反应速率常数的测定

杜林^{a,b} 徐永福^{*,b} 葛茂发^{*,a} 贾龙^c 王庚辰^d 王殿勋^a

("中国科学院化学研究所北京分子科学国家实验室 北京 100080) (^b中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室 北京 100029) (^c北京师范大学大气环境研究中心 北京 100875) (^d中国科学院大气物理研究所中层大气遥感与探测开放实验室 北京 100029)

摘要 O₃ 是对流层大气中一种重要的氧化剂,其与反应活性气体的反应是大气对流层中重要的反应过程,对于研究空 气污染的对策有重要意义.我们使用自行建设的烟雾箱模拟反应装置,结合 O₃ 分析仪和气相色谱研究了 O₃ 和乙炔的 反应.研究测得 O₃和乙炔在室温下(15)反应的4次实验的速率常数的平均值为4.13×10⁻²¹ cm³•molecule⁻¹•s⁻¹,其变 动系数为7%.与文献中采用其它方法得到的实验值相吻合.所得结果表明,我们测定的反应速率常数有较高的精密度, 我们所建的大气反应烟雾箱模拟系统是可靠的,可以用于大气 O₃浓度条件下 O₃的其它大气化学反应过程的深入研究, 为进一步深入研究大气中其它重要反应活性气体的化学反应提供了一定的基础. **关键词** 臭氧;乙炔;动力学;反应速率常数

Determination of Rate Constants for Ozone Reactions with Acetylene under Atmospheric Conditions

DU, $Lin^{a,b}$ XU, Yong-Fu^{*,b} GE, Mao-Fa^{*,a} JIA, $Long^{c}$

WANG, Geng-Chen^d WANG, Dian-Xun^a

(^a Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080) (^b State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029)

(^c Research Center for Atmospheric Environment, Beijing Normal University, Beijing 100875)

(^d Division for Middle Atmosphere and Remote Sensing, Institute of Atmospheric Physics, Chinese Academy of Sciences,

Beijing 100029)

Abstract Ozone is an important oxidant in the troposphere, and its reactions with reactive gases are important processes in the troposphere, which has a significance for the research on countermeasures of air pollution. The simulative reaction equipment of smog chamber, made in our laboratory, was used to study ozone reactions with acetylene in terms of monitoring instruments of ozone analyzer and gas chromatography. A mean value of 4.13×10^{-21} cm³•molecule⁻¹•s⁻¹ for rate constant was obtained from four experiments under room temperature of about 15 °C. Its variant coefficient is 7%. Our rate constant is within the range reported by other researchers using different experimental conditions and detecting methods. Results show that the precision of determination of rate constants is high from our experiments. Our self-made simulation system of smog chamber for atmospheric reactions is reliable, which can be applied to deep research of other ozone reactions under atmospheric ozone concentrations. Our results and experimental system provide a good basis for further research on chemical reactions of other important reactive gases in the atmosphere.

^{*} E-mail: xyf@mail.iap.ac.cn; gemaofa@iccas.ac.cn

Received May 29, 2006; revised and accepted July 24, 2006.

中国科学院知识创新工程方向性项目(No. KJCX2-SW-H8)、国家自然科学基金(No. 20577052)资助项目.

Keywords ozone; acetylene; kinetics; rate constant

O₃ 是对流层大气中一种重要的氧化剂,也是光化学 烟雾污染的关键物种之一.从北京市多年的观测数据来 看,2000 年之前 O₃最大浓度逐年递增,大气光化学活性 逐年增强^[1];2000 年之后,北京城区范围内的空气质量有 所改善,但就 O₃等主要污染物而言,北京当前的浓度水 平距世界卫生组织(WHO)的大气质量指导值和发达国家 大城市的浓度水平还有一定差距.O₃与大气中活性物种 的反应是一个重要的去除过程,大量的研究得到了一系 列有机物臭氧化反应速率常数和机理的数据^[2,3].根据北 京市 2000 年夏天的观测数据,乙炔在大气中拥有较高浓 度. 邵敏等^[4]在北京燕山石化关于非甲烷烃类(NMHC)的 观测研究中发现,乙炔浓度高达 2.30×10⁻⁷(体积分数).

O3 与乙炔反应的动力学和机理,在国外已经有一 些实验的和理论的研究[5~15].实验研究中对于反应体系 中 O₃ 的检测主要是采用红外吸收法和化学荧光法,并 且所用的 O₃ 初始浓度都在 1×10⁻⁶(体积分数)以上, 离 实际大气的情况很远. DeMore^[7]用紫外-可见吸收法进 行了研究,但其反应器体积只有 86 mL,而且 O₃初始浓 度高达 10⁻⁴ mol/L, 远远偏离实际大气中的情况. 为深 入研究大气臭氧浓度条件下的光化学反应,我们自行建 设了烟雾箱模拟反应装置,和以往研究不同,选用了 O3 分析仪进行低臭氧浓度变化的实时检测和分析. O3分析 仪作为一种大气化学分析仪器,具有响应时间短(10s)、 测量精度高(精度1×10⁻⁹)、重现性好等优点,可以很好 地监测反应体系中 O₃ 的浓度变化.本文报道了我们对 O3 和乙炔反应的研究结果, 这将为进一步更深入地研 究大气环境条件下反应活性气体的化学反应及其动力 学提供基础.

1 实验部分

1.1 实验技术原理

实验在乙炔浓度确定并且远大于 O₃浓度的条件下, 通过测定 O₃的衰减速率来测定反应的速率常数.反应 体系中 O₃的衰减损失有两条途径:

$$O_3 _ k_1$$

壁损失
(1)

$$O_3 + C_2 H_2 \xrightarrow{k_2}$$
 产物 (2)

 k_1, k_2 是反应式(1)和(2)的速率常数. O₃的壁损失是一级 反应, O₃ 与 C₂H₂的反应是二级反应,于是有:

$$\frac{-d[O_3]}{dt} = (k_1 + k_2[C_2H_2])[O_3]$$
(3)

在 C₂H₂的浓度远远大于 O₃的情况下([C₂H₂]/[O₃]₀≥ 100), [C₂H₂]在反应过程中是一个常数, (3)式可以写成:

$$\frac{-d\ln[O_3]}{dt} = k_1 + k_2[C_2H_2]$$
(4)

式中一 $dln[O_3]/dt$ 的值可以从实验得到,在测出 k_1 的情况下可以求出 k_2 的值.

1.2 实验试剂和设备

 O_3 发生器或标定仪(Calibrator), Model 49PS(美国热 电子公司 Thermo Electron Corporation 生产),用于产生 净化空气以及 $10^{-9} \sim 10^{-6}$ (体积分数)范围内任意指定浓 度的 O_3 ,产生气体流量 2.8 L/min,精度 1×10^{-9} .

乙炔气体样品为香宝气体有限公司生产,纯度 99.8%.采用静态注射器配气法,用 50 mL 注射器将纯 乙炔气体注射入反应器内. 配制气体用的空气为合成空 气,合成空气是由高纯N₂(占80%,体积比)和高纯O₂(占 20%,体积比)混合而得. 高纯 N₂纯度为 99.999%,高纯 O₂纯度为 99.995%.

 O_3 分析仪, Model 49C(美国热电子公司 Thermo Electron Corporation 生产), 用于对体系中的 O_3 浓度进行测定, 所需流量 1.0 L/min, 精度 1×10^{-9} .

GC112A 型气相色谱仪(含双 FID, 上海精密科学仪 器有限公司生产),用于对反应体系中的乙炔进行定量 分析.实验时采用针管注射进样.色谱条件为: POR-PAK Q 色谱柱(5 m),柱箱温度 110 ℃,进样器温度 140 ,检测器温度 140 ,载气(N₂)流速 14 mL/min,氢气 流速 25 mL/min,空气流速 233 mL/min.

1.3 实验方法

实验装置示意图见图 1. 反应器为 FEP Teflon 材料 的薄膜经热封加工而成,体积为 70 L,壁厚 0.05 mm, 表面积体积比为 17.1 m⁻¹. 该材料对反应物的吸附非常 小,是一种很好的反应惰性的材料. 在反应器的两端装 有 Teflon 材料的进气口和出气口,用于引入气体以及取 样测试. 进行反应实验之前,在没有反应性气体的条件 下测试 O₃的壁损失情况,用 O₃分析仪每 1 h 测定一次 O₃浓度,得出壁损失速率. O₃的初始浓度控制在 180× 10⁻⁹~190×10⁻⁹(体积分数). 进行反应实验时,用注射 器定量加入乙炔并混匀后,使用 O₃分析仪每 30 min 测 定一次反应器内 O₃ 的浓度. 反应器的体积会随着内部 No. 21

气体的减少而变化,在反应过程中体系内始终保持为 1.0×10^5 Pa. 根据 O₃ 损失速率的不同,实验的测定过程 持续 5~9 h.

图 1 实验装置示意图 Figure 1 Schematic diagram of the apparatus

反应体系中的乙炔浓度是通过引入体系中的乙炔体 积以及体系的总体积计算出来的.经过色谱的定量测定, 这种方法得到的有机物浓度的准确性优于±10%^[11].

用 O₃ 发生器产生的气体中挥发性有机物低于色谱 的检测限, 氮氧化物 NO_x 浓度低于 1×10⁻⁹. 所有的实 验都是在室温(15±0.5) ℃下进行, 压力为 1.0×10⁵ Pa.

2 结果与讨论

在 O_3 的壁损失实验以及 O_3 与乙炔的反应实验中, O_3 浓度都是指数性的衰减.图 2 是乙炔初始浓度 7.29×10^{-15} molecule·cm⁻³, O_3 初始浓度 189.8×10⁻⁹(体 积分数)时的 O_3 衰减情况.从图中可以看出,实验得到 的数据点很好地落在了经过指数性拟合后的曲线上.

Y Z 两型的反应实验中 O₃ 的表演曲线 **Figure 2** Plot of ozone decay in a typical reaction experiment

从公式(4)可以看出, ln([O₃]₀/[O₃])随时间的变化应 是线性关系, [O₃]₀代表 O₃的初始浓度, [O₃]是反应到某 一时刻的 O₃瞬时浓度. 经色谱测定, 反应前后乙炔的浓 度没有明显的改变, 这是由于乙炔的浓度比 O₃ 高很多, 参与反应的乙炔占的比例很小, 而且乙炔的壁损失也可 以忽略, 正满足了公式(4)要求的近似. 在不同的乙炔浓 度下以 ln([O₃]₀/[O₃])对时间作图,所得结果如图 3 所示.

图 3 壁损失以及 4 个乙炔浓度下 ln([O₃]₀/[O₃])随时间变化曲 线

a, b, c, d 和 e 分别代表乙炔浓度为 0 (O₃ 壁损失), 7.29×10⁻¹⁵, 10.94×10⁻¹⁵, 14.58×10⁻¹⁵和 18.23×10⁻¹⁵ molecule•cm⁻³

Figure 3 Plots of $\ln([O_3]_0/[O_3])$ against time for wall decay and four acetylene concentrations

a, b, c, d, and e indicate five different acetylene concentrations of 0 (ozone wall decay), 7.29×10^{-15} , 10.94×10^{-15} , 14.58×10^{-15} , and 18.23×10^{-15} molecule• cm⁻³, respectively

实验结果的数据点与经过最小二乘法拟合得到的直 线相关性很好,以乙炔浓度 7.29×10⁻¹⁵ molecule•cm⁻³的 实验数据为例,17 个数据点的相关度(*R*)达到了 1.00. 拟 合直线的斜率是(*k*₁+*k*₂[C₂H₂]),*k*₁ 是测得的 O₃ 壁损失, [C₂H₂]是乙炔的浓度(本实验条件下认为[C₂H₂]在实验过 程中不变化),于是可以求出 *k*₂. 在不加入乙炔时,O₃的 壁损失速率*k*₁是 3.95×10⁻⁶ s⁻¹,可推得其半衰期为48.7 h. 对于有乙炔参与的条件下,O₃ 的衰减速率随着乙炔 浓度的增加而线性地增加,这与公式(4)是一致的.在4 个不同浓度乙炔的实验中,*k*₁/(*k*₂[C₂H₂])的值分别是 0.122,0.082,0.069 和 0.058,因此 O₃ 的壁损失*k*₁是不能 忽略的.对图 3 中数据进行分析,得到的 O₃与乙炔反应 速率常数 *k*₂的值列于表 1,并根据实验数据算出不同实 验条件下 O₃ 的半衰期.从 O₃ 的半衰期也可以看出,在 本实验的条件下 O₃ 的壁损失不能忽略.

对不同乙炔浓度下的速率常数 k_2 平均,得到反应速 率常数为 4.13×10⁻²¹ cm³•molecule⁻¹•s⁻¹. 考虑实验中 的不确定度,所得的速率常数值为(4.13±0.29)×10⁻²¹ cm³•molecule⁻¹•s⁻¹. 我们的实验结果与文献值的比较, 列于表 2 中.

表 2 中来自于文献[5, 7]的数据是在某一个温度范围 内的经验公式. 如根据文献[5], 303 K 时的 *k* 值为 1.68× 10^{-20} cm³•molecule⁻¹•s⁻¹; 根据文献[7], 283 K 下的 *k* 值为 2.41×10⁻²⁰ cm³•molecule⁻¹•s⁻¹. 除表 2 中所列数据之外, Atkinson 等^[12]对前人文献值进行了总结,得出在 298 K 下的反应速率常数为 1.0×10^{-20} cm³•molecule⁻¹•s⁻¹;

	表1 O ₃ 与乙炔反应实验得到的速率常数 k ₂ 和 O ₃ 的半衰期
Table 1	Rate constant (k_2) and half-life time of ozone for the reaction of ozone with acetylene

Initial concentration of acetylene/ (10 ¹⁵ molecule•cm ⁻³)	Initial Volume fraction of ozone/10 ⁻⁹	${dln([O_3]_0/[O_3])/dt}/(10^{-5} s^{-1})$	Rate constant $k_2/(10^{-21} \text{ cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1})$	Half-life of ozone/h				
0	187.8	0.395	—	48.7				
7.29	189.8	3.62	4.42	5.3				
10.94	188.5	5.20	4.39	3.7				
14.58	186.6	6.16	3.95	3.1				
18.23	187.6	7.22	3.74	2.7				

表2 本文工作与文献值的比较

Table 2	Comparison between data from literature and this work	

Data source	Temperature/K	Expression of $k/(\text{cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1})$	Method
Cadle ^[5]	303~323	$4.98 \times 10^{-17} e^{-4.81 (\text{kcal/mole})/RT}$	IR absorption
Dillemuth ^[6]	298	$5.98 imes 10^{-20}$	IR absorption
DeMore ^[7]	243~283	$5.25 \times 10^{-12} e^{-10.79(\pm 0.43 \text{ kcal/mole})/RT}$	Vis-UV absorption
DeMore ^[8]	294	$2.99 \times 10^{-20} (\pm 5.15 \times 10^{-21})$	IR absorption
Stedman ^[9]	298	$8.6 \times 10^{-20} (\pm 8.63 \times 10^{-21})$	Chemiluminescence
Pate ^[10]	297	$3.8 \times 10^{-20} (\pm 6.14 \times 10^{-21})$	Chemiluminescence
Atkinson ^[11]	294	$7.8 \times 10^{-21} (\pm 1.16 \times 10^{-21})$	Chemiluminescence
This work	288	4.13×10^{-21}	O ₃ Analyzer

DeMore 等^[13]则根据文献值得出一个在 200~300 K 下通 用的经验公式 $1.0 \times 10^{-14} e^{-8.15(\pm 0.98 \text{ kcal/mol})/RT}$. O₃ 与乙炔的 反应速率受温度的影响较大, 而文献中没有 288 K 的测 定数据,不能与本文实验值进行直接比较.不过根据 DeMore 等[13]的经验公式可以得到288 K时的速率常数为 6.47×10⁻²¹ cm³•molecule⁻¹•s⁻¹, 与之相比, 我们所得结 果偏小 36%. 但是, 如果考虑该经验公式的误差, 288 K 时的值为 1.17×10⁻²¹~3.59×10⁻²⁰ cm³•molecule⁻¹•s⁻¹, 显然有很大的不确定性.本文的结果(4.13±0.29)× 10^{-21} cm³•molecule⁻¹•s⁻¹ 不仅完全落在该经验公式的结 果之内,而且变动系数仅为 7%. Atkinson and Aschmann^[11]得到的速率常数值相对以前的文献值也偏低, 他们认为是之前的实验结果受到了表面反应和二次反 应的影响而偏高. 从表 2 中的结果可以看出, 还需要在 进一步消除表面反应和二次反应的情况下,控制不同的 温度来得到更准确的动力学数据.本文的实验结果与前 人实验结果基本吻合, 表明我们的实验装置和技术路线 适合于大气臭氧浓度条件下大气化学反应过程的实验 室模拟研究,同时也丰富了 O3 与乙炔反应动力学的研 究方法和基本动力学数据.

3 结论

(1) O₃和乙炔的反应相对较慢,在测定反应速率常数时O₃的壁损失不能忽略.在本实验的条件下,O₃的壁

损失速率为 3.95×10⁻⁶ s⁻¹, 半衰期为 48.7 h.

(2) 研究得出在 288 K下不同 O₃和乙炔的初始浓度 时 4 次实验的反应速率常数平均值为 4.13×10^{-21} cm³• molecule⁻¹•s⁻¹. 考虑了温度效应之后,与文献值基本符 合.

(3)本实验所得结果的精密度较高,在不同的乙炔 初始浓度下(有2倍以上的差别),变动系数为7%,这表 明我们的烟雾箱模拟系统是可靠的,可以用于大气 O₃ 浓度条件下大气化学反应过程的深入研究.

References

1 Ma, Y.-L.; Zhang, Y.-H. *Res. Environ. Sci.* **2000**, *13*(1), 14 (in Chinese).

(马一琳, 张远航, **环境科学研究, 2000**, 13(1), 14.)

- 2 Atkinson, R.; Carter, W. P. L. Chem. Rev. 1984, 84, 437.
- 3 Rickard, A. R.; Johnson, D.; McGill, C. D.; Marston, G. J. Phys. Chem. A 1999, 103, 7656.
- 4 Shao, M.; Zhao, M.-P.; Bai, Y.-H.; Li, J.-L.; Tang, X.-Y. *Environment. Chem.* 1994, *13*(1), 40 (in Chinese).
 (邵敏, 赵美萍, 白郁华, 李金龙, 唐孝炎, 环境化学, 1994, *13*(1), 40.)
- 5 Cadle, R. D.; Schadt, C. J. Chem. Phys. 1953, 21, 163.
- 6 Dillemuth, F. J.; Schubert, C. C.; Skidmore, D. R. Combust. Flame 1963, 6, 211.
- 7 DeMore, W. B. Int. J. Chem. Kinet. 1969, 1, 209.
- 8 DeMore, W. B. Int. J. Chem. Kinet. 1971, 3, 161.
- 9 Stedman, D. H.; Niki, H. Environ. Lett. 1973, 4(4), 303.

- 10 Pate, C. T.; Atkinson, R.; Pitts, J. N. Jr. J. Environ. Sci. Health, Part A 1976, 11(1), 1.
- 11 Atkinson, R.; Aschmann, S. M. Int. J. Chem. Kinet. 1984, 16, 259.
- 12 Atkinson, R.; Baulch, D. L.; Cox R. A.; Hampson, R. F.; Kerr, J. A. Jr.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data **1997**, 26, 521.
- 13 DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R.

F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. In *JPL Publication 97-4 Evalution Number 12, NASA*, **1997**.

- 14 Cremer, D.; Kraka, E.; Crehuet, R.; Anglada, J.; Graefenstein, J. Chem. Phys. Lett. 2001, 347, 268.
- Cremer, D.; Crehuet, R.; Anglada, J. J. Am. Chem. Soc. 2001, 123(25), 6127.

(A0605292 QIN, X. Q.; ZHENG, G. C.)