Electrical apparatus for the detection and measurement of combustible gases, toxic gases or oxygen — Requirements and tests for apparatus using software and/or digital technologies

The European Standard EN 50271:2001 has the status of a British Standard
National foreword

This British Standard is the official English language version of EN 50271:2001.

The UK participation in its preparation was entrusted by Technical Committee GEL/31, Electrical apparatus for explosive atmospheres, to Subcommittee GEL/31/19, Gas detectors, which has the responsibility to:

— aid enquirers to understand the text;
— present to the responsible European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed;
— monitor related international and European developments and promulgate them in the UK.

A list of organizations represented on this subcommittee can be obtained on request to its secretary.

Cross-references

The British Standards which implement international or European publications referred to in this document may be found in the BSI Standards Catalogue under the section entitled “International Standards Correspondence Index”, or by using the “Find” facility of the BSI Standards Electronic Catalogue.

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, the EN title page, pages 2 to 9 and a back cover.

The BSI copyright date displayed in this document indicates when the document was last issued.

Amendments issued since publication

<table>
<thead>
<tr>
<th>Amd. No.</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© BSI 4 February 2002
Electrical apparatus for the detection and measurement of combustible gases, toxic gases or oxygen - Requirements and tests for apparatus using software and/or digital technologies

Appareils électriques de détection et de mesure des gaz combustibles, des gaz toxiques ou de l’oxygène - Exigences et essais pour les appareils utilisant un logiciel et/ou des technologies numériques

Elektrische Geräte für die Detektion und Messung von brennbaren Gasen, giftigen Gasen oder Sauerstoff - Anforderungen und Prüfungen für Warngeräte, die Software und/oder Digitaltechnik nutzen

This European Standard was approved by CENELEC on 2001-05-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

© 2001 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.
Foreword

This European Standard was prepared by SC 31-9, Electrical apparatus for the detection and measurement of combustible gases to be used in industrial and commercial potentially explosive atmospheres, of Technical Committee CENELEC TC 31, Electrical apparatus for explosive atmospheres.

The text of the draft was submitted to the formal vote and was approved by CENELEC as EN 50271 on 2001-05-01.

The following dates were fixed:

- latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2002-06-01
- latest date by which the national standards conflicting with the EN have to be withdrawn (dow) 2004-04-01
Contents

1 Scope ..4

2 Normative references ..4

3 Definitions ...5

4 Design principles ..5
 4.1 General design requirements ...5
 4.1.1 Analogue/digital interface ...6
 4.1.2 Numerical errors ..6
 4.1.3 Measuring operation ..6
 4.1.4 Special state indication ..6
 4.1.5 Digital indication ...6
 4.1.6 Digital reading (not applicable to alarm only apparatus) ...6
 4.2 Software ...6
 4.3 Hardware ...7
 4.4 Data transmission ...7
 4.5 Test routines ...7

5 Test of the digital unit ..8
 5.1 Verification of functional concept ..8
 5.2 Performance test ...8
1 Scope

This European Standard specifies requirements and tests for electrical apparatus for the detection and measurement of combustible gases, toxic gases or oxygen using software and/or digital technologies. It is applicable to fixed, transportable and portable apparatus intended for use in domestic premises or in industrial applications where safety integrity levels 1 or 2 of IEC 61508 or safety categories 1 or 2 of EN 954-1 are required.

In industrial applications this standard is also applicable to apparatus which are intended for use in hazardous areas which may contain explosive or potentially explosive atmospheres.

This European standard supplements the requirements of the European Standards for the detection and measurement of combustible gases and vapours (e.g. EN 61779-1 to EN 61779-5, EN 50194), toxic gases (e.g EN 45544, EN 50291) or oxygen (e.g. EN 50104).

2 Normative references

This European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest of the publication referred to applies.

EN 954-1 Safety of machinery. Safety related parts of control systems - Part 1: General principles for design

EN 45544-1 Workplace atmospheres - Electrical apparatus used for the direct detection and direct concentration measurement of toxic gases and vapours Part 1: General requirements and test methods

EN 45544-2 Part 2: Performance requirements for apparatus used for measuring concentrations in the region of limit values

EN 45544-3 Part 3: Performance requirements for apparatus used for measuring concentrations well above limit values

EN 45544-4 Part 4: Guide for selection, installation, use and maintenance

EN 50104 Electrical apparatus for the detection and measurement of oxygen – Performance requirements and test methods

EN 50194 Electrical apparatus for the detection of combustible gases in domestic premises – Test methods and performance requirements

EN 50291 Electrical apparatus for the detection of carbon monoxide in domestic premises – Test methods and performance requirements

EN 61779-1 Electrical apparatus for the detection and measurement of flammable gases Part 1: General requirements and test methods

1 For the purposes of this standard the word ‘toxic’ should be taken to include ‘very toxic’, ‘toxic’, ‘harmful’, ‘corrosive’, ‘irritating’, ‘carcinogenic’, ‘mutagenic’ and ‘toxic to reproduction’.
3 Definitions

For the purposes of this European Standard, the definitions given in EN 61779-1 apply together with the following definitions:

3.1 digital unit
part of an electrical apparatus in which data is processed digitally. Analogue-digital(A/D)-converters and digital-analogue(D/A)-converters as interfaces to analogue units of the apparatus belong to the digital unit

3.2 special state
all states of the apparatus other than those in which monitoring of gas concentration take place, for example warm-up, calibration mode or fault condition

3.3 software
intellectual creation comprising the programs, procedures, rules and associated documentation pertaining to the operation of the digital unit

3.4 safety-related software
software that is used to implement safety functions

3.5 parameters
settings by the manufacturer or user which effect the operation of the software, e.g. changing of alarm thresholds or measurement units. Parameter options are included in the software during design of the apparatus. Changes of parameter settings are not modifications of the software

4 Design principles

4.1 General design requirements

In general the design of digital units has to follow good design practice. Requirements are listed in the following clauses.
4.1.1 Analogue/digital interface
The relationship between corresponding analogue and digital values shall be unambiguous. The output range shall be capable of coping with the full range of input values within the instrument specification. A clear indication shall result if the conversion range has been exceeded. A/D- and D/A-converter quantisation steps shall be chosen so that the requirements in 4.1.2 for the accuracy of data representation will be fulfilled. The design shall take into account the maximum possible A/D- and D/A-converter errors.

4.1.2 Numerical errors
The resolution of data formats and precision to which values are computed shall be chosen so that any errors arising from the digital processing shall not be greater than the smallest deviation of indication required by the applicable European Standard. During data processing the digital unit shall control automatically the allowed input, output and internal data range and handle range violations. Estimation of deviations of measured values arising from quantisation, rounding and calculation errors shall take into account worst case conditions.

4.1.3 Measuring operation
During measuring operation, the maximum overall time of four successive updates of the output value shall not exceed the response time t_{90}, as required by the applicable European Standard, or time to alarm for alarm only apparatus.

4.1.4 Special state indication
If a special state is entered by an apparatus this shall be indicated by a signal. The special state shall be also indicated on outputs provided for remote transmission of measuring values.

4.1.5 Digital indication
If data for several indications are generated simultaneously by an apparatus it shall be possible to identify the indications. A combined signal shall be generated if all indications cannot be activated. In this case the indication with the highest safety priority at a given time shall be displayed or activated simultaneously. (Preferences of safety importance of indications shall be set suitably for each apparatus and documented in the instruction manual). It shall be possible to interrogate the indications that are not currently shown or activated.

If release of an indication encloses the automatic release of a second subsidiary indication (e. g. exceeding the 2nd limiting value includes exceeding the 1st limiting value) it is sufficient to show the indication of higher priority. After cancelling the higher order indication the subsidiary indication shall remain if the reason for its activation still exists.

4.1.6 Digital reading (not applicable to alarm only apparatus)
For indicated measured values the displayed unit of measurement and any related sign shall be unambiguous. Any under-range or over-range measurements shall be clearly indicated.

4.2 Software
Software components shall comply with IEC 61508-3 safety integrity levels 1 and 2. In particular:

a) It shall be possible for the user to identify the installed software version, for example by marking on the installed memory component, in (if accessible) or on the apparatus or by showing it on the display during power up or on user command.

b) It shall not be possible for the user to modify the software function.

c) Parameter settings shall be checked for validity. Invalid inputs shall be rejected. An access barrier shall be provided against parameter changing by unauthorised persons, e. g. it may be integrated by an authorisation code in the software or may be realised by a mechanical lock. Parameter settings shall be preserved after apparatus switch-off and while passing a special state. All user changeable parameters and their valid ranges shall be listed in the manual.
d) Software shall have a structured and modular design to facilitate testing and maintenance. Program modules shall have a clearly defined interface to other modules.

e) Software documentation shall be included in the technical file of the product. It shall include:

- the apparatus to which the software belongs;
- unambiguous identification of program version;
- type and version of software tools used;
- source code of safety-related software modules;
- functional description;
- software structure (e.g. flow chart, Nassi-Schneidermann diagram);
- software validation protocols;
- any software modification provided with the date of change and new identification data.

NOTE The documentation is only for the use of the test laboratory. All information is confidential and is the property of the manufacturer.

f) When third party approval includes safety related software, modifications of software functions by the manufacturer shall be notified to the third party. Modifications shall be fully documented and explained. Further testing may be necessary depending on the complexity of the modification.

4.3 Hardware

Components shall only be used within their specifications or they shall be verified by individual testing. For interconnection between components, cabling and other interface specifications shall be adhered to.

It shall be impossible to change the program code under any operating conditions. Upgrades shall only be possible under the control of the manufacturer.

To store parameters and variables, which should be permanent even after switch-off or during a special state, storage parts shall be used in which the data content remains permanent when the supply voltage is removed. Where a battery is used for this purpose, the instruction manual shall indicate the life time of the data storage.

4.4 Data transmission

Digital data transmission between spatially separated components of apparatus shall be reliable. Delays resulting from transmission errors shall not extend the response time t_{90} or time to alarm for alarm only apparatus by more than 1/3. If not the apparatus shall pass over to a defined special state. The defined special state shall be documented in the instruction manual.

4.5 Test routines

Computerised digital units shall incorporate test routines. On failure detection, the apparatus shall pass over to a defined special state. The defined special state shall be documented in the instruction manual.

The following minimum tests shall be performed by the apparatus:

a) power supply of digital units shall be monitored within time intervals of maximum ten times response time t_{90} or time to alarm for alarm only apparatus;

b) all available visible and audible output functions shall be tested. The test shall be carried out automatically after starting operation or on user request. The result may need to be verified by the user;

c) monitoring equipment with its own time base (e.g. watchdog) shall work independently and separately from the parts of the digital unit which perform the data processing. If a failure is detected by the monitoring equipment the apparatus shall enter into a special state;
d) program and parameter memory shall be monitored by procedures which allow the detection of a single bit error;

e) volatile memory shall be monitored by procedures that test the readability and writeability of the memory cells.

The tests except for test b) shall be done automatically and repeated cyclically equal to or less than 24 hours and after switching on.

5 Test of the digital unit

The testing of the digital units is part of the testing of the apparatus for compliance with the performance requirements. It is divided into two phases. In the first phase the functional concept of the digital unit is inspected with regard to meeting the requirements for construction and equipment (clause 4) within the framework of the entire apparatus. The second phase comprises a performance test of the digital units. It shall detect errors that can occur when transferring the design concept into hard- and software.

Because of multiple modes of realisation and application of digital units the testing scheme shall be adapted to the conditions of each apparatus.

5.1 Verification of functional concept

Functional concept analysis and evaluation depend on the documentation from the manufacturer. The verification shall be performed by using a suitable selection from the following list.

a) Function description of the digital unit:
 - measuring sequence (including all possible variations);
 - possible special states (see 4.1.4);
 - parameters and their tolerable adjustment range;
 - representation of measuring values and indications;
 - generation of alarms and signals;
 - extent and realisation of test routines;
 - extent and realisation of remote data transmission.

b) Hardware description:
 - construction of the digital unit (circuit diagram);
 - block functional description of the digital unit;
 - resolution, errors and input/output range of A/D- or D/A-interfaces;
 - specification of interfaces between functional parts (with description of the coding procedure used for the digital data transmission).

c) Software documentation:
 - according to 4.2.

The construction of the digital units shall be conform with the requirements of clause 4.

The software documentation according 4.2 shall be complete.

5.2 Performance test

The apparatus shall be operated during the performance test in such a manner that, starting from the measuring state, it enters all relevant special states.

The following operation states shall be performed if applicable:

a) four measuring values distributed over the measuring range;

b) measuring range under- and overflow;

c) special states if they can be entered without destruction of the hardware or modification of the software;

NOTE In general warm up, calibration or fault condition will form part of the checked special states
d) activation of every digital indication;
e) test routines;
f) change of parameters.

Operation states a) and b) shall be performed for a selection of measuring ranges, including the minimum and maximum range.

The tests are executed under the normal conditions for test given in the applicable European Standards for the detection and measurement of combustible gases, toxic gases or oxygen.

The digital unit function test may be combined with tests according to the applicable European Standards for the detection and measurement of combustible gases, toxic gases and oxygen as far as possible.

All performance tests and their results shall be documented. The function of the digital unit shall be identical to the function described in the instruction manual.
BSI — British Standards Institution

BSI is the independent national body responsible for preparing
British Standards. It presents the UK view on standards in Europe and at the
international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of
British Standards should make sure that they possess the latest amendments or
editions.

It is the constant aim of BSI to improve the quality of our products and services.
We would be grateful if anyone finding an inaccuracy or ambiguity while using
this British Standard would inform the Secretary of the technical committee
responsible, the identity of which can be found on the inside front cover.
Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures
that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be
addressed to Customer Services. Tel: +44 (0)20 8996 9001.
Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also

In response to orders for international standards, it is BSI policy to supply the
BSI implementation of those that have been published as British Standards,
unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and
international standards through its Library and its Technical Help to Exporters
Service. Various BSI electronic information services are also available which give
details on all its products and services. Contact the Information Centre.
Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com.

Subscribing members of BSI are kept up to date with standards developments
and receive substantial discounts on the purchase price of standards. For details
of these and other benefits contact Membership Administration.
Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001.
Email: membership@bsi-global.com.

Information regarding online access to British Standards via British Standards
Online can be found at http://www.bsi-global.com/bsonline.

Further information about BSI is available on the BSI website at

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the
UK, of the publications of the international standardization bodies. Except as
permitted under the Copyright, Designs and Patents Act 1988 no extract may be
reproduced, stored in a retrieval system or transmitted in any form or by any
means – electronic, photocopying, recording or otherwise – without prior written
permission from BSI.

This does not preclude the free use, in the course of implementing the standard,
of necessary details such as symbols, and size, type or grade designations. If these
details are to be used for any other purpose than implementation then the prior
written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright & Licensing Manager.
Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553.
Email: copyright@bsi-global.com.